Modeling Excited States of Molecular Organic Aggregates for Optoelectronics

Annu. Rev. Phys. Chem. 2023

Light-driven phenomena in organic molecular aggregates underpin several mechanisms relevant to optoelectronic applications. Modelling these processes is essential for aiding the design of new materials and optimizing optoelectronic devices. In this review, we cover the use of different atomistic models, excited-state dynamics, and transport approaches for understanding light-activated phenomena in molecular aggregates, including radiative and nonradiative decay pathways. We consider both intra- and intermolecular mechanisms and focus on the role of conical intersections as facilitators of internal conversion. We explore the use of the exciton models for Frenkel and charge transfer states and the electronic structure methods and algorithms commonly applied for excited-state dynamics. Throughout the review, we analyze the approximations employed for the simulation of internal conversion, intersystem crossing, and reverse intersystem crossing rates and analyze the molecular processes behind single fission, triplet-triplet annihilation, Dexter energy transfer, and Förster energy transfer.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s